Heterogeneous Electrocatalysis for Solar Fuel Production

  1. He, M.; Chang, X.; Chao, T.-H.; Li, C.; Goddard, W.; Cheng, M. J.;* Xu, B.;* Lu, Q.* "Selective Enhancement of Methane Formation in Electrochemical CO2 Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu" ACS Catal. 2022, 12, 6036.

  2. Cheng, Y.-L.;† Hsieh, C.-T.;† Ho, Y.-S.; Shen, M.-H.; Chao, T.-H.; Cheng, M. J.* "Examination of the Brønsted−Evans−Polanyi Relationship for the Hydrogen Evolution Reaction on Transition Metals Based on Constant Electrode Potential Density Functional Theory" Phys. Chem. Chem. Phys. 2022, 24, 2476.

  3. Hong, J.-C.;† Kuo, T.-C.;† Yang, G.-L.; Hsieh, C.-T.; Shen, M.-H.; Chao, T.-H.; Lu, Q.; Cheng, M. J.* "Atomistic Insights into Cl-Triggered Highly Selective Ethylene Electrochemical Oxidation to Epoxide on RuO2: Unexpected Role of In Situ-Generated Intermediate to Achieve Active Site Isolation" ACS Catalysis 202111, 13660.

  4. Wu, D.; Zhang, J.; Cheng, M. J.; Lu, Q.;* Zhang, H.* "Machine Learning Investigation of Supplementary Adsorbate Influence on Copper for Enhanced Electrochemical CO2 Reduction Performance" J. Phys. Chem. C 2021, 125, 15363.

  5. Li, J.; Chang, X.; Zhang, H.; Malkani, A. S.; Cheng, M. J.; Xu, B.;* Lu, Q.* "Electrokinetic and in situ spectroscopic investigations of CO2 electrochemical reduction on copper" Nature Commun. 2021, 12:3264.

  6. Talukdar, B.; Kuo, T.-C.; Sneed, B. T.; Lyu, L.-M.; Lin, H.-M.; Chuang, Y.-C. Cheng, M. J.*; Kuo, C.-H.* “Enhancement of NH3 Production in Electrochemical N2 Reduction by the Cu-Rich Inner Surfaces of Beveled CuAu Nanoboxes” ACS Appl. Mater. Interfaces 2021, 13, 51839.

  7. Zhang, H.; Li, C.; Lu, Q.*; Cheng, M. J.*; Goddard, W. A.* “Selective Activation of Propane Using Intermediates Generated During Water Oxidation” J. Am. Chem. Soc. 2021143, 3967.

  8. Kuo, T.-C.;† Chou, J.-W.;† Shen, M.-H.; Hong, Z.-S.; Chao, T.-H.; Lu, Q.*; Cheng, M. J.* "First-Principles Study of C-C Coupling Pathways for CO2 Electrochemical Reduction Catalyzed by Cu(110)" J. Phys. Chem. C 2021, 4, 2464.

  9. Shen, M.-H.; Chao, T.-H.; Tang, Y.-Z.; Cheng, M. J.* "First-Principles Evaluation of One-Dimensional Metal-Organic Frameworks for Electrocatalytic C-H Activation of Natural Gas " Chem. Asian J. 2021, 16, 292.

  10. Chen, M.-F.;† Chao, T.-H.;† Shen, M.-H.; Lu, Q.*; Cheng, M. J.* "Evaluating Potential Catalytic Active Sites on Nitrogen-Doped Graphene for the Oxygen Reduction Reaction: An Approach Based on Constant-Electrode-Potential Density Functional Theory Calculations " J. Phys. Chem. C 2020, 124, 25675.

  11. He, M.; Li, Chunsong.; Zhang, H.; Chang, X.; Chen, J.; Goddard, W.; Cheng, M. J.;* Xu, B.;* Lu, Q.* "Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis" Nature Commun. 2020, 11:3844

  12. Chang, K.; Jian, X.; Jeong, H. M.; Kwon, Y.; Lu, Q.;* Cheng, M. J.* "Improving CO2 Electrochemical Reduction to CO Using Space Confinement between Gold or Silver Nanoparticles" J. Phys. Chem. Lett. 2020, 11, 1896.

  13. Jeong, H. M.; Kwon, Y.; Won, J. H.; Lum, Y.; Cheng, M. J.; Head-Gordon, M.; Kang, J. K.* "Atomic-scale spacing between copper facets for the electrochemical reduction of carbon dioxide" Adv. Energy Mater. 2020,1903423

  14. Li, J.; Wu, D.; Malkani, A. S.; Chang, X.; Cheng, M. J.; Xu, B.;* Lu, Q.* "Hydroxide is not a promoter of C2+ product formation in Electrochemical Reduction of CO on Copper" Angew. Chem. Int. Ed. 2020, 59, 2

  15. Zhang, J.; Zhang, H.; Cheng, M. J.;* Lu, Q.;*  "Tailoring the Electrochemical Production of H₂O₂: Strategies for the Rational Design of High-Performance Electrocatalysts" Small 2019, 1902845.

  16. Chang, K.; Zhang, H.; Chen, J. G.; Lu, Q.;* Cheng, M. J.* "Constant Electrode Potential Quantum Mechanical Study of CO2 Electrochemical Reduction Catalyzed by N-Doped Graphene" ACS Catalysis 2019, 9, 8197.

  17. Luo, J.-H.; Hong, Z.-S.; Chao, T.-H.; Cheng, M. J.* "Quantum Mechanical Screening of Metal-N4-Functionalized Graphenes for Electrochemical Anodic Oxidation of Light Alkanes to Oxygenates" J. Phys. Chem. C 2019, 123, 19033.

  18. Chen, L.-Y.; Kuo, T.-C.; Hong, Z.-H.; Cheng, M. J.;* Goddard, W. A.* "Mechanism and Kinetics for both Thermal and Electrochemical Reduction of N2 Catalysed by Ru(0001) based on Quantum Mechanics" Phys. Chem. Chem. Phys. 2019, 21, 17605.

  19. Zhang, H.; Chang, X.; Chen, J.; Goddard, W.; Xu, B.;* Cheng, M. J.;* Lu, Q.* "Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane" Nature Commun. 2019, 10:3340

  20. Zhang, H.; Li, J.; Cheng, M. J.* Lu, Q.* "CO Electroreduction: Current Development and Understanding of Cu-Based Catalyst" ACS Catalysis 2019, 9, 49.

  21. Li, J.; Chang, K.; Zhang, H. C.; He, M.; Goddard, W. A.; Chen, J. G.; Cheng, M. J.; Lu, Q.* "Effectively increased efficiency for electro-reduction of carbon monoxide using supported polycrystalline copper powder electrocatalysts" ACS Catalysis 2019, 9, 4709.

  22. Cao, Z; Zacate, S. B.; Sun, X.; Liu, J.; Hale, E. M.; Carson, W. P.; Tyndall, S. B.; Xu, J.; Liu, X.;  Liu, X.; Song, C.; Luo, J.-H.; Cheng, M. J.; Wen, X.; Liu, W. "Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO2 Reduction" Angew. Chem. 2018, 130, 12857.

  23. Zhang, H.; Goddard, W. A.; Lu, Q.;* Cheng, M. J.* "The Importance of Grand-Canonical Quantum Mechanical Methods to Describe the Effect of Electrode Potential on the Stability of Intermediates Involved in both Electrochemical CO2 Reduction and Hydrogen Evolution" Phys. Chem. Chem. Phys. 2018, 20, 2549.

  24. Chang, K.; Chen, J.; Lu, Q.;* Cheng, M. J.*"Grand Canonical Quantum Mechanical Study of the Effect of the Electrode Potential on N-Heterocyclic Carbene Adsorption on Au Surfaces" J. Phys. Chem. C 2017, 121, 24618.

  25. Chang, K.; Chen, J.; Lu, Q.;* Cheng, M. J.*"Quantum Mechanical Study of N-Heterocyclic Carbene Adsorption on Au Surfaces" J. Phys. Chem. A 2017, 121, 2674.

  26. Cheng, M. J.; Clark, E. L.; Pham, H. H.; Bell, A. T.; Head-Gordon, M. “Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons” ACS Catalysis 2016, 6, 7769.

  27. Cheng, M. J.;‡ Klaus, S.;‡ Trotochaud, L.;‡ Head-Gordon, M.; Bell, A. T. “Experimental and Computational Evidence for Highly-Active Fe Sites Present on the Surface of Oxidized Gold for the Electrocatalytic Oxidation of Water in Basic Media” ChemElectroChem 2016, 3, 66. ‡ equal contribution

  28. Pham, H. H.; Cheng, M. J.; Frei, H.; Wang, L. W. “Surface Proton Hopping and Fast-Kinetics Pathway of Water Oxidation on Co3O4 (001) Surface” ACS Catalysis 2016, 6, 5610

  29. Friebel, D.; Louie, M.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J., Sokaras, D.; Weng, T.-C.; Alonso-Mori, R.; Davis, R.; Bargar, J.; Nørskov, J.; Nilsson, A.; Bell, A. T. “Identification of Highly Active Fe sites in (Ni, Fe)OOH for Electrocatalytic Water Splitting” J. Am. Chem. Soc. 2015, 137, 1305.

  30. Cheng, M. J.; Kwon, K.; Head-Gordon, M.; Bell, A. T. “Tailoring Metal-Porphyrin-Like Active Sites on Graphene to Improve the Efficiency and Selectivity of Electrochemical CO2 Reduction”  J. Phys. Chem. C 2015, 119, 21345.

  31. Cheng, M. J.; Head-Gordon, M.; Bell, A. T. “How to Chemically Tailor Metal-Porphyrin-Like Active Sites on Carbon Nanotubes and Graphene for Minimal Overpotential in the Electrochemical Oxygen Evolution and Oxygen Reduction Reactions”  J. Phys. Chem. C, 2014, 118, 29482



Heterogeneous Catalysis

  1. Chang, K.; Zhang, H.; Cheng, M. J.;* Lu, Q.;* "Application of Ceria in CO2 Conversion Catalysis" ACS Catalysis 2019, 10, 613.

  2. Luo, J.-H.; Chen, L.-Y.; Nguyen, D. N.; Guo, D.; An, Q.;* Cheng, M. J.* “Dual Functions of Water in Stabilizing the Metal-Pentazolate Hydrates [M(N5)2(H2O)4]•4H2O (M = Mn, Fe, Co, and Zn) High-Energy Density Materials” J. Phys. Chem. C 2018, 122, 21192.

  3. O'Leary, W. C.; Goddard, W. A ; Cheng, M. J. “The Dual-Phase Mechanism for the Catalytic Conversion of n-Butane to Maleic Anhydride by the Vanadyl Pyrophosphate Heterogeneous Catalyst” J. Phys. Chem. C 2017, 121, 24069.

  4. Cheng, M. J.; Goddard, W. A “The Mechanism of Alkane Selective Oxidation by the M1 Phase of Mo-V-Nb-Te Mixed Metal Oxides: Suggestions for Improved Catalysts” Top. Catal. 2016, 59, 1506.

  5. Cheng, M. J.; Goddard, W. A “In Silico Design of Highly Selective Mo-V-Te-Nb-O Mixed Metal Oxide Catalysts for Ammoxidation and Oxidative Dehydrogenation of Propane and Ethane” J. Am. Chem. Soc. 2015, 137, 13224.

  6. Cheng, M. J.; Goddard, W. A; Fu, R. “The Reduction-Coupled Oxo-Activation (ROA) Mechanism responsible for the catalytic selective activation and functionalization of n-Butane to Maleic Anhydride by Vanadium Phosphate Oxide” Top. Catal. 2014, 57, 1171.

  7. Cheng, M. J.; Goddard, W. A. “The critical role of Phosphate in Vanadium Phosphate Oxide for the catalytic activation and functionalization of n-Butane to Maleic Anhydride” J. Am. Chem. Soc. 2013, 135, 4600.

  8. Cheng, M. J.; Nielsen, R. J.; Tahir-Kheli, J.; Goddard, W. A. “The Magnetic and Electronic Structure of Vanadyl Pyrophosphate from Density Functional Theory” Phys. Chem. Chem. Phys. 2011,13, 9831.

  9. Goddard, W. A.; Chenoweth, K.; Pudar, S.; van Duin, A. C. T.; Cheng, M. J. “Structures, Mechanisms, and Kinetics of Selective Ammoxidation and Oxidation of Propane over Multi-metal Oxide Catalysts” Top. Catal. 2008, 50, 2.

  10. Chenoweth, K.; van Duin, A. C. T.; Persson, P.; Cheng, M. J.; Oxgaard, J.; Goddard, W. A. “Development and Application of a ReaxFF Reactive Force Field for Oxidative Dehydrogenation on Vanadium Oxide Catalysts” J. Phys. Chem. C 2008, 112, 14645.

  11. Cheng, M. J.; Chenoweth, K.; Oxgaard, J.; van Duin, A.; Goddard, W. A. “Single-site Vanadyl Activation, Functionalization, and Reoxidation Reaction Mechanism for Propane Oxidative Dehydrogenation on the Cubic V4O10 Cluster” J. Phys. Chem. C. 2007, 111, 5115.

  12. Goddard, W. A.; van Duin, A.; Chenoweth, K.; Cheng, M. J.; Pudar, S.; Oxgaard, J.; Merinov, B.; Jang, Y. H.; Persson, P. “Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx” Top. Catal. 2006, 38, 93.



Homogeneous Catalysis


  1. Yang, P.-C.; Yu, K.-P.; Hsieh, C.-H.; Fang, C.-T.; Liu, H.-K.; Pao, C.-W.; Deng, L.; Cheng, M. J.; Lin, C.-Y.* "Stabilization of a high-spin three-coordinate Fe(III) imidyl complex by radical delocalization" Chem. Sci. 2022, accepted.

  2. Wu, Y.-Y.; Hong, J.-C.; Tsai, R.-F.; Pan, H.-R.; Huang, B.-H.; Chiang, Y.-W.; Lee, G.-H.; Cheng, M. J.;* Hsu, H.-F.* "Ligand-based Reactivity of Oxygenation and Alkylation in Cobalt Complexes Binding with (Thiolato)phosphine Derivatives" Inorg. Chem. 2020, 59, 4650.

  3. Yan, J.-A.; Yang, Z.-K.; Chen, Y.-S.; Chang, Y.-H.; Lyu, C.-L.; Luo, C.-G.; Cheng, M. J.,* Hsu, H.-F.* "Activation of O-H and C-O Bonds in Water and Methanol by a Vanadium-bound Thiyl Radical" Chem. Eur. J.  2018,  24, 15190.

  4. Liu, W.; Cheng, M. J.; Nielsen, R. J.; Goddard, W. A.; Groves, J. T. “Probing the C-O bond-formation step in metalloporphyrin catalyzed C-H oxygenation reactions” ACS Catalysis, 2017, 7, 4182.

  5. Fu, R.; Goddard, W. A.; Cheng, M. J.; Nielsen, R. J. “The pincer phosphinito vanadium ((OPO)V) propane monoxygenation homogeneous catalyst based on the reduction-coupled oxo activation (ROA) mechanism” ACS Catalysis, 2017, 7, 356.

  6. Liu, K.; Liu, K.-K.; Cheng, M. J.;* Han, M. H.* “Theoretical and Experimental Study of the Nickel-Catalyzed Isomerization of 2-Methyl-3-butenenitrile and the Effect of a Lewis Acid” J. Organometallic Chem. 2016, 822, 29.

  7. Cheng, M. J.; Nielsen, R. J.; Goddard, W. A. “A Homolytic Oxy-Functionalization Mechanism: Intermolecular Hydrocarbyl Migration from M-R to Vanadate Oxo” Chem. Commun. 2014, 50, 10994

  8. Cheng, M. J.; Fu, R.; Goddard, W. A. “Design and Validation of Non-Metal Oxo Complexes for C-H Activation” Chem. Commun. 2014, 50, 1748.

  9. Liu, W.; Huang, X.; Cheng, M. J.; Nielsen, R. J.; Goddard, W. A.; Groves, J. T. “Oxidative Aliphatic C-H Fluorination with Fluoride Ion Catalyzed by a Manganese Porphyrin” Science 2012, 337, 1322.

  10. Cheng, M. J.; Bischof, S. M.; Nielsen, R. J.; Gunnoe, T. B.; Periana, R. A.; Goddard, W. A. “The para-substituent effect and pH-dependence of the organometallic Baeyer–Villiger oxidation of rhenium–carbon bonds” Dalton Trans. 2012,41, 3758.

  11. Bischof, S. M.; Cheng, M. J.; Nielsen, R. J.; Gunnoe, T. B.; Goddard, W. A. Periana, R. A. “Selective Functionalization of Rhenium Aryl Bonds by O-Atom Transfer” Organometallics 2011, 30, 2079.

  12. Young, K. J. H.; Mironov, O. A.; Nielsen, R. J.; Cheng, M. J.; Stewart, T.; Goddard, W. A.; Periana, R. A. “Synthesis and Characterization of OsIV(acac)2PhCl and Demonstration of H/D Exchange in Benzene” Organometallics 2011, 30, 5088.

  13. Young, K. J. H.; Lokare, K. S.; Leung, C. H.; Cheng, M. J.; Nielsen, R. J.; Petasis, N. A.; Goddard, W. A.; Periana, R. A. “Synthesis of Osmium and Ruthenium complexes bearing dimethyl (S,S)-2,2’-(pyridine-2,6-diyl)bis(4,5-dihydrooxazol-4-carboxylate) Ligand and Application to Catalytic H/D Exchange” J. Mol. Catal. A 2011, 339, 17.

  14. Cheng, M. J.; Nielsen, R. J.; Ahlquist, M.; Goddard, W. A. “Carbon-Oxygen Bond Forming Mechanisms in Rhenium Oxo-Alkyl Complexes” Organometallics 2010, 29, 2026.



Heterogeneous Surface Reactions


  1. An, Q.; Cheng, M. J.; Jaramillo-Botero, A.; Goddard, W. A. “CCl Radicals As a Carbon Source for Diamond Thin Film Deposition” J. Phys. Chem. Letter 2014, 5, 481.

  2. Jaramillo-Botero, A.; An, Q.; Cheng, M. J.; Beegle, L. W.; Hodyss, R. P.; Goddard, W. A. “Molecular Fragmentation Due to Hypervelocity Impact: Understanding NASA’s Cassini Ion and Neutral Mass Spectrometer Data from Reactive Dynamics Simulations” Phys. Rev. Lett. 2012, 109, 213201.



Organic Reactions

  1. Chen, P.-T.; Yu, C.-L.; Shen, M.-H.; Cheng, M. J.; Wu, Y.-T.;* Hsu, H.-F.* "Highly Substituted Acephenanthrylenes and Their π-Extended Derivatives: Syntheses, Structural Analyses and Properties" Org. Lett. 2022, accepted

  2. Tanpure, S. D.; Kuo, T.-C.; Cheng, M. J.; Liu, R. S.* "Gold(I)-Catalyzed Highly Diastereo- and Enantioselective Constructions of Bicyclo[3.2.1]oct-6-ene Frameworks via (4+3)-Cycloadditions" ACS Catal. 2021, 12, 536.

  3. Chen, P.-Y.; Liu, Y.-C.; Hung, H.-Y.; Pan, M.-L.; Wei, Y.-C.; Kuo, T.-C.; Cheng, M. J.; Chou, P.-T.;* Chiang, M.-H.;* Wu, Y.-T.* "Diindeno[2,1-b:2',1'-h]biphenylenes: Syntheses, Structural Analyses and Properties" Org. Lett. 2021, 23, 8794.

  4. More, S.; Kardile, R.; Kuo, T.-C.; Cheng, M. J.;* Liu, R. S.* "Gold Catalysts Can Generate Nitrone Intermediates from a Nitrosoarene/Alkene Mixture, Enabling Two Distinct Catalytic Reactions. A Nitroso-activated Cycloheptatriene/Benzylidene Rearrangement" Org. Lett. 2021, 23, 5506.

  5. Cai, A.; Yan, W.; Zeng, X.; Zacate, S.; Chao, T.-H.; Krause, J.; Cheng, M. J.; Liu, W.* "Copper-Catalyzed Carbo-Difluoromethylation of Alkenes via Radical Relay" Nature Commun. 2021, 12:3272.

  6. Pandit, Y. B.; Jiang, Y.-T.; Chen, T.-C.; Kuo, T.-C.; Cheng, M. J.;* Liu, R.-S..* "Gold-catalyzed [5+2]-Annulations of 1,3-Diyn-1-amides with Anthranils Bearing no C(6)-substituent" Org. Chem. Front.  2021, 8, 2563.

  7. Sayaji, M.; Chao, T.-H.; Cheng, M. J.;* Liu, R.-S..* "Gold-catalyzed Bicyclic and [3+2]-Annulations of Internal Propargyl Alcohols with Nitrones and Imines to Yield to Two Distinct Heterocycles" Adv. Synth. Catal.  2021, 133, 4529.

  8. Chen, C.-N.; Cheng, W.-M.; Wang, J.-K.; Chao, T.-H.; Cheng, M. J.;* Liu, R. S.* "Gold-catalyzed [3+2]-Annulations of a-Aryl Diazoketones with the Tetrasubstituted Alkenes of Cyclopentadienes: High Stereoselectivity and Enantioselectivity" Angew. Chem. Int. Ed. 2021, 60, 4479.

  9. Tang, M.-C.; Wei, Y.-C.; Chu, Y.-C.; Jiang, C.-X.; Huang, Z.-X.; Wu, C.-C.; Chao, T.-H.; Hong, P.-H.; Cheng, M. J.;* Chou, P.-T.;* Wu, Y.-T.* "[2,2](5,8)Picenophanedienes: Syntheses, Structural Analyses, Molecular Dynamics and Reversible Intramolecular Structure Conversion" J. Am. Chem. Soc. 2020, 142, 20351. 

  10. Sasane, A. V.; Raj, A. S. K.; Chao, T.-H.; Cheng, M. J.;* Liu, R.-S..* "Gold‐Catalyzed Oxidative Aminocyclizations of Propargyl Alcohols and  Amines to form two Distinct Azacyclic Products: Carbene formation versus a 3,3‐sigamatropic shift of an initial Intermediate" Chem. Eur. J.  2020,  26, 1.

  11. Sharia, M.; Hsu, Y.-C.; Jiang, Y.-T.; Lu, M.-Y., Kuo, T.-C. Cheng, M. J.;* Liu, R. S.* "Gold-catalyzed Oxidations of 1,3-Diynamides with C(1)- Versus C(3)-Regioselectivity: Catalyst-dependent Oxidative Cyclizations in the C(3)-Oxidation" Org. Lett. 2020, 2020, 22, 11, 4478.

  12. Kardile, R. D.; Chao, T.-H.; Cheng, M. J.;* Liu, R. S.* "Gold(I)-Catalyzed Highly Diastereo- and Enantioselective Cyclization/[4+3] Annulation Cascades between 2-(1-Alkynyl)-2- alken-1-ones and Anthranils" Angew. Chem. Int. Ed. 2020, 132, 1.

  13. Cheng, L.-C.; Chen, W.-C.; Santhoshkumar, R.; Chao, T.-H.; Cheng, M. J.*, Cheng, C.-H.* "Synthesis of Quinolinium Salts from N-Substituted Anilines, Aldehydes, Alkynes, and Acid: Theoretical Understanding of the Mechanism and Regioselectivity" Eur. J. Org. Chem. 2020, 2116.

  14. Skaria, M.; More S. A.; Kuo, T.-C.; Cheng, M. J.;* Liu, R.-S..* "Gold-catalyzed Iminations of Terminal Propargyl Alcohols with Anthranils with Atypical Chemoselectivity for C(1)-Additions and 1,2-Carbon Migration" Chem. Eur. J.  2020,  26, 3600.

  15. Zeng, X.; Yan, W.; Paeth, M.; Zacate, S. B.; Hong, P.-H.; Wang, Y.; Yang, D.; Yang, K.; Yan, T.; Song, C.; Cao, Z.*, Cheng, M. J.; Liu, W.* "Copper-Catalyzed, Chloroamide-Directed Benzylic C−H Difluoromethylation " J. Am. Chem. Soc.  2019, 141, 19941.

  16. Zeng, X.; Yan, W.; Samson, B.; Chao, T.-H.; Sun, X.; Cao, Z.;* Bradford, K. G.; Paeth, M.; Tyndall, S. B.; Yang, K.; Kuo, T.-C.; Cheng, M. J.; Liu, W.* "Copper-Catalyzed Decarboxylative Difluoromethylation" J. Am. Chem. Soc.  2019, 141, 11398.

  17. Sharma, P.; Singh, R. R.; Giri, S. S.; Chen, L.-Y.; Cheng, M. J.;* Liu, R.-S.* "Gold-catalyzed Oxidation of Thioalkynes to form Phenylthio Ketene Derivatives via a Non-Carbene Route" Org. Lett. 2019, 21, 5475.

  18. Kulandai Raj, A. S.; Tan, K. C.; Chen, L.-Y.; Cheng, M. J.;* Liu, R.-S.* "Gold-catalyzed Bicyclic Annulations of 4-Methoxy-1,2-dienyl-5-ynes with Isoxazoles to Form Indolizine Derivatives via Au-p-Allene Intermediate" Chem. Sci. 2019, 10, 6437.

  19. Wu, T.-L.; Liao, S.-Y.; Huang, P.-Y., Hong, Z.-S.; Huang, M.-P.; Lin, C.-C.; Cheng, M. J.;* Cheng, C.-H.* "Exciplex Organic Light-Emitting Diodes with Nearly 20% External Quantum Efficiency: Effect of Intermolecular Steric Hindrance between the Donor and Acceptor Pair" ACS Appl. Mater. Interfaces 2019, 11, 19294.

  20. Paeth, M.; Tyndall, S. B.; Chen, L.-Y.; Hong, J.-C.; Carsom, W. P.; Liu, X.; Sun, X.; Liu, J.; Yang, K.; Hale, E. M.; Tierney, D. L.; Liu, B.; Cao, Z.;* Cheng, M. J.; Goddard, W. A.;* Liu, W.* "Csp3-Csp3 Bond-Forming Reductive Elimination from Well-Defined Copper(III) Complexes" J. Am. Chem. Soc.  2019, 141, 3153.

  21. Singh, R. R.; Skaria, M.; Chen, L.-Y.; Cheng, M. J.;* Liu, R.-S.* "Gold-catalyzed (4+3)-Annulations of 2-Alkenyl-1-Alkynylbenzenes with Anthranils with Alkyne-Dependent Chemoselectivity: Skeletal Rearrangement versus Non-Rearrangement" Chem. Sci. 2019, 10, 1201.

  22. Paeth, M.; Carson, W.; Luo, J.-H.; Tierney, D.; Cao, Z.; Cheng, M. J.;* Liu, W.* "Copper Mediated Trifluoromethylation of Benzylic Csp3 -H Bonds" Chem. Eur. J.  2018,  24, 11559.

  23. Hsieh, Y.-C.; Wu, C.-F.; Chen, Y.-T.; Fang, C.-T.; Wang, C.-S.; Li, C.-H.; Chen, L.-Y.; Cheng, M. J.; Chueh, C.-C.; Chou, P.-T.; Wu, Y.-T., "5,14-Diaryldiindeno[2,1-f:1′,2′-j]picene: A New Stable [7]Helicene with a Partial Biradical Character" J. Am. Chem. Soc. 2018, 140, 14357. 

  24. Hung, C.-H.; Gandeepan, P.; Cheng, L.-C.; Chen, L.-Y.; Cheng, M. J.;* Cheng, C.-H.*  "Experimental and Theoretical Studies on Iron-Promoted Oxidative Annulation of Arylglyoxal with Alkyne: Unusual Addition and Migration on the Aryl Ring" J. Am. Chem. Soc. 2017,  139, 17015.

  25. Cheng, M. J.; Cheng, H. M.; Chu, S. Y. “Computational studies on insertion reaction of germynes” J. Chin. Chem. Soc. 2006, 53, 1243.

  26. Cheng, M. J.; Cheng, H. M.; Chu, S. Y. “Computational studies on stable triplet states of heteroacetylenes and the effects of halogen substituents” J. Phys. Chem. A 2006, 110, 10495.

  27. Jayanth, T. T.; Jeganmohan, M.; Cheng, M. J.; Chu, S. Y.; Cheng, C. H. “Ene reaction of arynes with alkynes” J. Am. Chem. Soc. 2006, 128, 2232.

  28. Cheng, M. J.; Chu, S. Y. “Bonding pattern continuum from covalent to dative carbon-silicon bonds for substituted silenes: A theoretical study” Organometallics 2005, 24, 3746.

  29. Cheng, M. J.; Lai, C. L.; Hu, C. H. “Theoretical study of the Wanzlick equilibrium” Mol. Phys. 2004, 102, 2617.

  30. Su, M. D.; Lai, C. H.; Cheng, M. J.; Chu, S. Y. “Hydrogen shift isomerization study of doubly bonded compounds between heavy group 15 elements HXYH (X,Y As, Sb, and Bi)” J. Phys. Chem. A 2004, 108, 8448.

  31. Cheng, M. J.; Hu, C. H. “B2P2 rings: through-space p bond or stable diradical? A theoretical study” Mol. Phys. 2003, 101, 1319.

  32. Cheng, M. J.; Hu, C. H.; Yeh, C. S. “Reactions of 2-propanol with Cu+ in the gas phase: A density functional theory study” J. Phys. Chem. A 2002, 106, 11570.

  33. Cheng, M. J.; Hu, C. H. “Computational study on the stability of imidazol-2-ylidenes and imidazolin-2-ylidenes” Chem. Phys. Lett. 2001, 349, 477.

  34. Cheng, M. J.; Hu, C. H. “Intermolecular hydrogen transfers in 2,3-dihydroimidazol-2-ylidene and 2,3-dihydrothiazol-2-ylidene: a theoretical study ” Tetrahedron Lett. 2001, 42, 3897.

  35. Cheng, M. J.; Hu, C. H. “A computational study on the stability of diaminocarbenes” Chem. Phys. Lett. 2000, 322, 83.


US Patents

  1. Goddard, W. A; Cheng, M. J.; Fu, R. “Methods for providing bond activation catalysts and related catalysts, systems, and methods” 2016, Publication number US 9308525